On large-batch training for deep leanring: generalization gap and sharp minima 笔记
论文题目: On large-batch training for deep leanring: generalization gap and sharp minima
论文内容: 在SGD中使用较大的batch-size会导致模型的泛化能力退化,因为较大的batch size 模型更加容易在 sharp minima处收敛,较小的batch size使模型在 flat minima处收敛。
论文亮点
Many theoretical properties of these methods (SGD and its variants) are known. These include guarantees of:
(a) convergence to minimizers of strongly-convex functions and to stationary points for non-convex functions,
(b) saddle-point avoidance and
(c) robustness to input data.
Stochastic gradient methods have, however, a major drawback: owing to the sequential nature of the iteration and small batch sizes, there is limited avenue for parallelization.
大 batch size 的缺点
大 batch size 的泛化能力差是因为,它倾向收敛在 sharp minima 处。 极小值的 sharpness 是由 \(\nabla ^2 f(x)\) 正特征值的大小来决定的,特征值越大,极小值就越 sharp, 泛化能力也就越差。